If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60x^2-26x-11=0
a = 60; b = -26; c = -11;
Δ = b2-4ac
Δ = -262-4·60·(-11)
Δ = 3316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3316}=\sqrt{4*829}=\sqrt{4}*\sqrt{829}=2\sqrt{829}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{829}}{2*60}=\frac{26-2\sqrt{829}}{120} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{829}}{2*60}=\frac{26+2\sqrt{829}}{120} $
| 3t+12t=-9 | | 0.8(x+3)=6 | | 4/5(x+3)=6 | | 2/x-9=1/x-3-1/x-4 | | 6x+9x+19=169 | | 6x+9x=160 | | 3x+x(7-2)=77+x | | 25x+9=1 | | 5y^2+24y-24=0 | | 4x-1÷7=2x | | 2x+3(x-6)=2-(x+2) | | 2(p-6)=0 | | 2^1=2x | | 63x2= | | 3·(2x−1)=2x+13 | | 3x+7=15+x | | 9x^2-40x-50=0 | | 120/360=100/x | | x+2=2(x-1)/3 | | X(x-4)(3x+12)=0 | | x2^-6x=3x | | x^2=–14x | | x2=–14x | | 3(x−5)+2x=5x−15 | | 9x^2+21x-44=0 | | 4x+7=6(x−2)−3x | | (x–6)=3(x-16-6) | | 27x-2=12x=73 | | x^2+8=3^2x | | 4x÷1=x÷x-1 | | 5^(x+3)=1/5 | | 4x/1=x/x-1 |